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1.1 Introduction

Current consumer graphics hardware, like NVIDIA's GeForce 3 and GeForce 4 chipset
family or the ATI Radeon 8500 series, offers the possibility of replacing the fixed-func-
tion rendering pipeline with user-developed programs, usually referred to as shaders or
shader programs. Newer generation cards, like the NVIDIA GeForce FX, ATI Radeon
9700, or cards based on 3Dlabs’ P10 chip, provide an extended programmability model
that offers a larger instruction set and even dynamic flow control, transforming GPUs
into highly programmable processors. Future generations of graphics hardware can be
expected to further increase programmability. In the not too distant future, GPUs will
become general purpose processors that cannot only perform graphics-oriented opera-
tions, but also other computations such as encryption in parallel to the host CPU.

In this paper and also in XEngine the term shader is used instead of program or shader
program to refer to the pieces of code that program certain parts of the pipeline. There
are mainly historical reasons for this. RenderMan [Hanr90] and DirectX 8.0 use the term
shader. In addition, it is the most common term found today. Some say that the term
shader has the connotations of only representing colour operations and has nothing to do
with vertices, which certainly is a valid argument. However, neither RenderMan nor
DirectX make this distinction and also the OpenGL 2.0 drafts chose the term shader over
program. Various OpenGL extensions for low-level shading languages, such as
ARB_vertex_program and ARB_fragment_program, use the term program, however.
This should be kept in mind when reading the corresponding specifications.

Two computational frequencies are supported in current graphics hardware, per vertex
and per fragment. As such, there are two different kinds of shaders, vertex shaders and
fragment shaders. Vertex shaders get executed for each vertex that passes through the
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rendering pipeline and can change the vertex position or any other user-defined vertex
attributes specified per-vertex, such as normals, colours or texture coordinates. Fragment
shaders get executed for each fragment and have access to the texture sampling stages in
the pipeline. Additionally, a fragment shader receives the computational results of a ver-
tex shader as inputs. These inputs must include the vertex position in clip coordinates
and can include any other user-defined attributes, such as generated or modified texture
coordinates or colours. Using the inputs from the vertex shader, fragment shaders read
texels (= texture samples) from the texture stages and combine them in some way with
the other inputs to form the final colour value that gets passed on to the final stages of the
rendering pipeline, like stencil and depth testing. Most new fragment shading languages
also allow modification of the depth value that gets used in the depth test.

The majority of shaders are nowadays written in low-level, rendering API-dependent
assembly languages that are internally compiled by the rendering API or graphics driver
into machine code of the GPU. In the case of vertex shaders, if the GPU doesn't support
all requested features, they might also get compiled into specialized CPU machine code,
for example, utilizing Intel SSE or AMD 3DNow! technology, to emulate the shader on
the CPU. The capabilities of these shader assembly languages are very limited, and the
available opcodes are not very flexible or general purpose. Few registers are available,
and the number of commands per shader is limited to only a few dozens.

However, in the foreseeable future, a massive capacity increase of the programmable
features of graphics hardware can be expected, and the use of high-level shading lan-
guages instead of cryptic assembly mnemonics will become standard. A first step in this
direction has already been taken by Stanford University with its Stanford Real-Time
Shading Project [Mark01][Prou01], sponsored by various vendors like NVIDIA and
SGI. The Stanford project designed a C-like shading language on top of OpenGL and
developed a compiler for consumer graphics hardware, such as the GeForce 3. Using the
experience from the Stanford project, NVIDIA, together with Microsoft, developed its
own C-like shading language called Cg [Kirk02] with a compiler capable of compiling to
various OpenGL low-level shading languages and to the DirectX 8.0 and 9.0 assembly
shading languages. Cg is now also a part of Direct3D 9.0, where the language is called
HLSL. The OpenGL 2.0 white papers [Rost02][Bald03] also outline a C-like, high-level
shading language called Glslang that will be one of the main improvements of OpenGL
2.0, expected for release in mid-2003.

1.2 Architecture Overview

Using programmable shaders is a good way of taming the complexity of current render-
ing APIs. The ray-tracing industry has long discovered the advantages of shading lan-
guages and has already used languages like the RenderMan Shading Language [Hanr90]
for a couple of years. However, for current hardware the RenderMan Shading Language
is too complex. It is nevertheless a viable goal for future generation hardware to be able
to use it in real-time visualization.

In [Olan98] Olano proposed an abstract, real-time graphics pipeline decomposed into a
number of user-programmable stages and implemented a procedural C-like shading lan-
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guage for it. This was one of the first attempts at developing a real-time shading architec-
ture with an accompanying shading language. The pipeline stages used for Olano’s sys-
tem were model, transform, primitive, interpolate, shade, atmosphere, and warp. In his
thesis Olano also provided a concrete implementation of his ideas for PixelFlow
[Eyle97], an expensive, highly programmable graphics system for generating high-
speed, highly realistic images. Most of the pipeline stages proposed by Olano are also
found in current fixed-function pipeline hardware or can be mapped to them. Figure 1.1
shows an abstracted block diagram of the typical pipeline stages of current fixed-func-
tion hardware.

Figure 1.1: Abstract Block Diagram of Current Fixed-Function Pipelines

As opposed to the many stages in Olano’s abstract graphics pipeline, current program-
mable graphics hardware only offers two types of programmable pipeline stages that
combine most of the stages proposed by Olano. Having to deal with only two program-
mable stages reduces the complexity of GPUs and also has the advantage for developers
that they are only faced with two programming models. The two stages are the vertex
processing stage and the fragment processing stage, programmed by so-called vertex
shaders and fragment shaders, respectively. Vertex shaders operate at the vertex level and
replace the transform and lighting part of the pipeline. Fragment shaders operate at the

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Geometry Data 

Transform & Lighting 

Primitive Assembly, 
Culling,  

Perspective Division, 
Viewport Mapping 

Rasterization 

Texturing 

Color Sum and Fog 

Alpha Test, 
Depth Test, 
Stencil Test 

Frame Buffer Blending 

Frame Buffer 



4

fragment level and replace parts of the fragment processing pipeline. The following sec-
tions describe each of the two shader types in detail.

1.2.1  Vertex Shaders

Vertex shaders get executed for each vertex that passes through the pipeline. A vertex
shader is a program that has exactly one vertex as input and one vertex as output. A ver-
tex in this context is a structure composed of a number of vertex attributes, one of which
must be the vertex position. Other vertex attributes include normal vector, primary and
secondary colour, texture coordinates, or any other user-defined value that is required for
the per-vertex computations in the vertex shader. Vertex shaders cannot remove vertices
from a primitive, nor can they add new vertices. Furthermore, they can never operate on
several vertices (or primitives) at the same time.

When a vertex shader is used the following parts of the vertex processing fixed-function
pipeline are not active, and changing a render state that affects these parts will have no
effect on the vertex shader:

• Transformation from world space to clipping space

• Normalization

• Lighting and materials

• Texture coordinate generation

• In some shader execution environments user-defined clipping planes are also disabled

All other parts of the fixed-function pipeline are not replaced, in particular:

• Primitive assembly

• Frustum culling

• Perspective division

• Viewport mapping

• Backface culling
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Figure 1.2: Vertex Shader Execution Environment

Even though most shading languages, especially low-level, assembly-like languages,
define their own shader execution environment, the general architecture always closely
resembles the architecture shown in figure 1.2. The vertex shader has access to a number
of register files, some of which are read-only or write-only. In current hardware designs
these registers are usually four-component vectors of floating-point values, but this is not
a necessity. Newer generation hardware also supports integer and boolean registers
[Micr02].

The shader can read the vertex attributes from a relatively small number of read-only
input registers. Using a typically large number of read-only parameter registers and a
small number of temporary registers the shader then performs its computations. The
parameter registers contain values that do not change per vertex, but only change once
every frame or once every couple of frames. Examples of values that are usually stored
in the parameter registers are the combined world-view-projection matrix (or any varia-
tion of it), light directions, light positions, or matrix palettes used for indexed vertex
blending. A small number of address registers can also be used by the shader to perform
indexed relative addressing into the array of parameter registers. These registers can gen-
erally not be directly read in the shader, but only used for relative addressing.

Finally, the shader writes its results to a number of write-only output registers. These
output registers have a pre-defined semantic meaning, such as the transformed, homoge-
neous vertex position, texture coordinates, and vertex colours. These results are then
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passed on to the next stages of the fixed-function pipeline, and might eventually be used
by a possibly activated fragment shader at a later stage in the pipeline.

1.2.2  Fragment Shaders

Fragment shaders get executed per fragment during the rasterization phase in the graph-
ics pipeline. A fragment is a point in window coordinates produced by the rasterizer with
associated attributes, such as interpolated colour values, a depth value, and possibly one
or more sets of texture coordinates. A fragment modifies the pixel in the frame buffer at
the same window space location based on a number of parameters and conditions
defined by the pipeline stages following the rasterizer, such as the depth test, the stencil
test, or a fragment shader. Sometimes the notion of fragment is mistaken for the notion of
pixel. However, a pixel is only the final colour value written to the frame buffer, and
each pixel in the frame buffer usually corresponds to multiple fragments. Some of these
fragments get discarded because of e.g. the depth test; others might get combined to form
the final pixel colour.

Logically, fragment shaders operate on fragments just before they reach the final stages
of the rendering pipeline, such as the alpha, depth, and stencil tests. The fragment shader
receives the vertex shader outputs interpolated across a primitive as input and delivers a
single colour value and a depth value that gets passed on to the final stages of the pipe-
line as output.

When a fragment shader is used, the following parts of the fixed-function fragment pipe-
line are not active:

• Texture access

• Texture application and blending

• Fog and colour sum (some execution environments still allow fixed-function fog
computations to follow after the fragment shader)

However, the following functionality is not subsumed by fragment shaders:

• Shading model

• Alpha test

• Depth test

• Stencil test

• Frame buffer blending

• Dithering
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Figure 1.3: Fragment Shader Execution Environment

Similarly to vertex shaders, the fragment shader execution environment is slightly differ-
ent depending on the shading language used. However, the basic architecture remains the
same and usually closely resembles figure 1.3. Just like vertex shaders, fragment shaders
have access to a number of register files, where some registers are read-only and some
are write-only. The input registers contain the interpolated vertex shader results, such as
the fragment’s colour values or texture coordinates, and are read-only for the shader.
Additionally, the fragment shader can look up filtered texture values using texture sam-
pler stages. The fragment shader can either use the interpolated texture coordinates
passed in in one of the input registers or texture coordinates computed directly in the
shader to sample the texture. Dependent texture reads are also possible, allowing more
advanced effects, such as per-pixel lighting. Using the input register values and sampled
texture values the shader then computes its results and stores them in the write-only out-
put registers. These output registers have a pre-determined semantic meaning. The typi-
cally supported outputs are the final fragment colour that will be used as pixel colour in
the frame buffer, if the fragment passes the alpha, depth, and stencil tests, and a possible
fragment depth value that will be used in the depth test for the fragment. Note that cur-
rently no fragment shading language or fragment shader execution environment supports
address registers, which is mostly due to the fact that current execution environments do
not offer a large enough number of parameter registers to justify address registers.
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1.3 Low-Level Shading Languages

This section provides an overview of currently available low-level, assembly-like shad-
ing languages. Low-level shading languages resemble common assembly languages for
general purpose CPUs, with the difference that their instruction set is very limited and
contains special instructions that only make sense for graphics programming. The base
data type for registers in all the shading languages presented subsequently is a four com-
ponent vector of floating-point values. All the languages offer SIMD-like instructions
that can work on all four components of a register simultaneously. Typical instructions of
this category are component-wise addition, component-wise multiplication, or the four-
component dot product which, among other things, can be used to compute the result of
matrix-vector multiplications, which is typically one of the most common operations in
graphics programming.

While most high-level shading languages provide the same syntax for writing vertex and
fragment shaders, this is usually not the case for low-level languages. In fact, there is no
assembly-like shading language available at the moment that can be used to write vertex
shaders and fragment shaders. Instead the languages are always specific to one type of
shader, where the language for fragment shaders is usually less powerful than the lan-
guage for vertex shaders. However, looking at newer low-level shading languages, the
same instructions are becoming available in both vertex and fragment shaders. It can be
expected that future languages will use almost the same instruction set and syntax.

The following subsections discuss the various currently available low-level shading lan-
guages. The first ever shading language for consumer graphics hardware, the Direct3D 8
shading language, is introduced. Then the OpenGL equivalents, NV_vertex_program
and ARB_vertex_program, are discussed. Finally, more advanced languages for newer
generation hardware are presented, such as the new versions of the low-level shading
languages of Direct3D 9.0, NV_vertex_program2, and ARB_fragment_program. Since
the Direct3D 8.0 shading languages were the first languages to appear, the discussion of
them will introduce a lot of concepts and ideas that are also valid for the other shading
languages.

1.3.1  Direct3D 8 Shading Languages

Version 8.0 of DirectX, Microsoft’s multimedia API for Windows, was the first major
3D graphics API to introduce a programmable pipeline and a vertex and fragment shader
assembly-like shading language to go with it [Micr01]. The vertex shader language of
Direct3D 8 can, by design, replace the entire transform and lighting pipeline stage. The
fragment shader language can replace the multitexturing and blending pipeline stage of
previous versions of Direct3D. It slightly extends the texture blending capabilities, but
does not offer much computational power and has a rather rigid syntax and a large
number of restrictions.
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1.3.1.1  Direct3D 8 Vertex Shader Assembler

The execution environment for vertex shaders closely follows the general execution
environment shown in figure 1.2. All registers are four-component floating-point regis-
ters. There is only a single address register, which is also a four-component floating-
point register, but only the x component can be used for indexed relative addressing into
the array of parameter registers. Before the value of the address register is used to per-
form relative addressing, it is rounded down to the next integer number. In DirectX, the
parameter registers are also called constant registers. Table 1.1 summarizes the available
registers for DirectX 8 vertex shaders. In the table, if a register name contains the letter n
in italics, it represents a group of registers where the n is replaced by an index from 0 to
count minus one, where count is the number of available registers as noted in the corre-
sponding column of the table.

Twelve output registers for passing the computed results on to the next stages of the
pipeline are available. As listed in table 1.1, the names of these output registers all begin
with the lower-case letter o. The output registers have fixed names and pre-defined
semantics.  Every vertex shader must at least write the vertex position in homogeneous
clip coordinates to the oPos output register. The homogeneous vertex position can be
computed by storing the combined world-view-projection matrix in four parameter reg-
isters, and then multiplying the vertex position, which the shader receives in one of the
input registers in local coordinates, with that matrix. The two vertex colour registers,
oD0 and oD1, and the eight texture coordinate registers are interpolated across a primi-
tive during rasterization and passed on to a possible fragment shader or to the fixed-func-
tion multitexturing stage of the pipeline.

The general syntax for a vertex shader instruction in DirectX 8 (and all of the sub-
sequently discussed assembly-like shading languages) looks like this:

opcode destReg , srcReg1 [, srcReg2] [, srcReg3]

where opcode represents the instruction opcode, such as mov, add, mul, or dp3, destReg
represents the name of the destination register for the instruction, and srcReg1, srcReg2,
and srcReg3 are the names of the source registers for the instruction. The square

Table 1.1: Registers in the DirectX 8 Vertex Shader Execution Environment
Name Type Usage Count
a0 address register write/use 1
vn input registers read-only 16
rn temporary registers read/write 12
cn parameter registers read-only 96
oPos homogeneous position output register write-only 1
oD0 primary colour output register write-only 1
oD1 secondary colour output register write-only 1
oPts point size output register write-only 1
oFog fog colour output register write-only 1
oTn texture coordinate output registers write-only 8
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brackets indicate that the last two source registers are only used with certain instructions.
There are two types of instructions, general instructions that use up exactly one instruc-
tion slot, and macro instructions, like the m4x4 vector-matrix multiplication instruction,
that get expanded to a number of general instructions and therefore require more than
one slot. A vertex shader can use a maximum of 128 instruction slots. Table 1.2 lists the
available general instructions in the DirectX 8 vertex shading language. Newer vertex
shading languages typically support the same instructions and possibly some new
instructions, such as sin or cos for directly computing the sine and cosine of a value.

Table 1.2: Direct3D 8 Vertex Shading Language General Instructions
Opcode Arity Description Example
add Binary Adds the two sources and stores the result in the

destination register.
add r0, c0, v0

dp3 Binary Calculates the three-component dot product of
the two source vectors and replicates the result
to all four components of the destination regis-
ter.

dp3 oPos, r0, r1

dp4 Binary Calculates the four-component dot product of
the two source vectors and replicates the result
to all four components of the destination regis-
ter.

dp4 r1, r0, c0

dst Binary Calculates the distance vector between the two
source vectors.

dst r0, v2, c5

expp Unary Computes the exponential function with base
two with low-precision.

expp r0, c0.x

lit Unary A special instruction that calculates lighting
coefficients that can be used in per-vertex light-
ing computations.

lit r3, r0

logp Unary Computes the logarithmic function with base
two with low-precision.

logp r1, c2.y

mad Ternary Multiplies the first two sources with each other
and then adds the third source.

mad r0, c0, c1, v0

max Binary Computes the component-wise maximum of the
two source vectors.

max r2, r0, r1

min Binary Computes the component-wise minimum of the
two source vectors.

min, r3, c0, c1

mov Unary Moves the contents of the source register into
the destination register.

mov oD0, v1

mul Binary Multiplies the two sources in a component-wise
manner.

mul r0, c0, v0

rcp Unary Computes the reciprocal of the source scalar. rcp r1, v0.x

rsq Unary Computes the reciprocal square root of the
source scalar.

rsq r0, c0.y

sge Binary Sets the destination to 1.0 if the first source
operand is greater than or equal to the second
source operand, or to 0.0 otherwise.

sge r0, v0, c0

slt Binary Sets the destination to 1.0 if the first source
operand is lower than the second source oper-
and, or to 0.0 otherwise.

slt r0, v0, c2

sub Binary Subtracts the two sources from one another. sub oPos, r0, v3
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In addition to the general instructions the DirectX 8 vertex shading language has a
number of macro instructions that get expanded to general instructions. For example, the
m4x4 macro instruction gets expanded to four dp4 general instructions. Table 1.3 lists the
available macro instructions.

Additionally, the language supports modifiers that can be used on source and destination
registers at no additional runtime cost. The negation modifier, indicated by putting a
minus sign in front of a register name, allows negating a source register before it is read.
The source swizzle mask can be used to swap or replicate the components of a source
register in any way. For example, r0.wzyx changes the regular order of the components
of the vector register r0 to the exact opposite order. Similarly, r0.x replicates the x com-
ponent into all four components. Note that source swizzle masks do not actually change
the contents of the source register, but only use the components in the way specified by
the swizzle mask when the register is read. Finally, the destination register mask can be
used to mask out writing to certain components of the destination register of an instruc-
tion. For example, using r0.xz as destination register will only write the result of the
instruction to the x and z components.

Skimming through the instruction set, it becomes obvious that a couple of important and
rather useful instructions are missing, for example a division instruction or instructions
to compute the sine and cosine of a value. However, with a bit of trickery these instruc-
tions can be emulated. Division can be performed by using the rcp and mul instructions:

; scalar division r0.x = r1.x / r2.x
rcp r0.x, r2.x; compute 1 / r2.x
mul r0.x, r1.x, r0.x

Table 1.3: Direct3D 8 Vertex Shading Language Macro Instructions
Opcode Arity Description Example
exp Unary Computes the exponential function with base

two with high-precision.
exp r0, c0.z

frc Unary Computes the component-wise fractional por-
tion of the source vector.

frc oD1, c1

log Unary Computes the logarithmic function with base
two with high-precision.

log r2, v0.w

m3x2 Binary Computes the product of the source vector and
the 3x2 matrix specified by the second source
register, which must be a constant register.

m3x2 r0, v0, c0

m3x3 Binary Computes the product of the source vector and a
3x3 matrix specified by the second source regis-
ter, which must be a constant register.

m3x3 r0, v0, c5

m3x4 Binary Computes the product of the source vector and a
3x4 matrix specified by the second source regis-
ter, which must be a constant register.

m3x4 r0, v0, c0

m4x3 Binary Computes the product of the source vector and a
4x3 matrix specified by the second source regis-
ter, which must be a constant register.

m4x3 r5, v0, c0

m4x4 Binary Computes the product of the source vector and a
4x4 matrix specified by the second source regis-
ter, which must be a constant register.

m4x4 r0, v0, c3
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The sine, cosine, and other functions can be approximated by using the corresponding
Taylor series [Wlok01][Lind00a]. As will become evident in the following sections,
newer generation shading languages have these instructions already built in as general
instructions and do not require such tricks.

As was mentioned before, the transform and lighting functionality of the fixed-function
graphics pipeline can be completely replaced by a vertex shader [Lind00b]. For example,
the following vertex shader emulates fixed-function pipeline functionality for one
enabled directional light using one set of texture coordinates. As with the fixed-function
pipeline, the main program must pass in vertices that have a position and a vertex normal
as vertex attributes. The vertex position in local object coordinates is contained in regis-
ter v0, the vertex normal in v1, and the texture coordinates in v2. The main program
must also provide the combined world-view-projection matrix in the parameter registers
c0 to c3, the inverse transpose of the world matrix in registers c4 to c7, the light direction
vector in world coordinates in register c8, a diffuse material colour in c9, a global ambi-
ent colour in c10, and the constant value 0 in c11.x. Whenever any of these values
changes, the application must reset them in the corresponding parameter registers of the
vertex shader. The shader performs the lighting calculations in world space.

; transform the vertex from local object space to clip space
dp4 oPos.x, v0, c0
dp4 oPos.y, v0, c1
dp4 oPos.z, v0, c2
dp4 oPos.w, v0, c3

; transform the normal from local to world coordinates
dp4 r1.x, v1, c4
dp4 r1.y, v1, c5
dp4 r1.z, v1, c6
dp4 r1.w, v1, c7

; normalize the normal vector
dp3 r1.w, v1, v1
rsq r1.w, r1.w
mul r1, r1, r1.w

; normalize the light direction vector
mov r2.xyz, c8
dp3 r2.w, c8, c8
rsq r2.w, r2.w
mul r2, r2, r2.w

; perform the lighting computation
; color = ambient + diffuse * max(0, dot(normal, light direction))
dp3 r3.x, r1, r2
max r3.x, r3.x, c11.x
mad oD0, c9, r3.x, c10

; simply pass through the texture coordinates
mov oT0, v2

In section 1.4.2, we shall later examine what this shader looks like in the high-level shad-
ing language Cg to see the benefit of using a high-level shading language.
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1.3.1.2  Direct3D 8 Pixel1 Shader Assembler

The fragment shading language of Direct3D 8 is a rather primitive and restricted lan-
guage that replaces the multitexture stage of the fixed-function pipeline. There are five
different versions of the language. Versions 1.0 to 1.3 are based on the same execution
environment. Higher versions up to 1.3 successively add instructions and lift some
restrictions of earlier versions. Version 1.4, which was introduced with DirectX 8.1, uses
a different execution environment and represents a break with previous versions of the
language. It was introduced for ATI’s new consumer graphics card at that time, the
Radeon 8500.

There are two main types of instructions in the Direct3D 8 pixel shader assembly lan-
guage: texture addressing instructions and arithmetic instructions. The two types cannot
be mixed, and texture addressing instructions must be specified before any arithmetic
instructions in the shader. This holds true for all versions of the pixel shader language in
Direct3D 8. Newer fragment shading languages, such as ARB_fragment_program,
which will be discussed later in section 1.3.6, do not impose such restrictions and texture
addressing and arithmetic instructions can be used anywhere in a fragment shader.

Texture addressing instructions use so-called texture registers to sample textures. They
replace the texture fetching functionality of the fixed-function pipeline. When a texture
addressing instruction is executed, the texture coordinate set indicated by the number of
the specified texture register is used to sample a texture. The texture sample is then
stored in the texture register and can be used by other instructions of the shader. Some
texture addressing instructions perform various transformations on the input texture
coordinates and use the computed coordinates to sample the texture. Also dependent tex-
ture reads are possible, using the result of a texture lookup to lookup another texture.

Note that, just like the texture coordinate set, the sampler stage to be used is also indi-
cated by the number of the specified texture register for language versions up to 1.3. Ver-
sion 1.4 lifts this restriction and uses the number of the destination register to determine
the sampler stage to be used. Therefore, with pixel shader language versions prior to 1.4,
it is not possible to use the same set of texture coordinates with multiple texture sampler
stages. So there is a one-to-one relationship between the texture coordinate set and the
texture sampler stage. Texture coordinate set 0 cannot be used with sampler stage 1 but
only with sampler stage 0.

Arithmetic instructions are used to combine the interpolated vertex colours that are
passed in as input parameters to the fragment shader and the texture samples obtained via
the texture addressing instructions. Thus arithmetic instructions replace the texture com-
bining functionality of the fixed-function pipeline. The fragment colour and a possible
depth value used for the subsequent depth test represent the final outputs of the fragment
shader. The available arithmetic instructions in the Direct3D 8 pixel shader assembly
language are add, sub, dp3, dp4, mul, mov, mad, and a couple of other fragment shader-

1. Direct3D does not differentiate between the notions fragment and pixel. Therefore fragment
shaders are called "pixel shaders" even though Direct3D’s pixel shaders actually perform fragment
shading as described in section 1.2.2.
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specific instructions. The instructions are used just as the corresponding vertex shader
instructions presented in table 1.2.

Unlike newer fragment shading languages, the pixel shader language versions 1.0 to 1.3
of Direct3D 8 offer a large variety of texture addressing instructions that not only per-
form texture fetching but also various arithmetic computations. There are, for example,
instructions to perform a matrix transformation on a set of texture coordinates before
using it to sample a texture. This design decision was necessary because it is not possible
to arbitrarily mix texture addressing instructions with arithmetic instructions. However,
it later proved to be a bad design choice, since these calculations could also be performed
by regular arithmetic instructions, and adding new computations for texture coordinates
would require new texture addressing instructions, which would lead to an even larger
and more complex instruction set. Therefore, in newer fragment shading languages, also
in pixel shader language version 1.4 of Direct3D 8, there are only a small number of tex-
ture instructions that exclusively fetch texture samples and do not perform any computa-
tions on texture coordinates. Transforming texture coordinates is done by simply using
arithmetic instructions on the texture coordinates before using them to sample a texture.

Even though the computational power of the Direct3D 8 fragment shading language is
very limited, it is already capable of computing some interesting per-pixel lighting
effects, such as per-pixel bump mapping using Blinn’s formula [Kilg00]. To evaluate
Blinn’s formula, only addition, three-component dot product, multiplication, and divi-
sion operations are required. The division is required to normalize vectors used in the
lighting calculations. However, since a division instruction is not available to Direct3D 8
fragment shaders, tricks have to be used to achieve the desired results. To normalize vec-
tors a so-called normalization cube map texture can be used which contains unit-length
vectors encoded as RGB triples. The not normalized vector is now interpreted as 3D tex-
ture coordinate to sample the cube map texture. The result of this texture lookup is the
normalized vector. Newer fragment shading languages have a division instruction, or at
least a reciprocal function, so that vector normalization can easily be performed in a frag-
ment shader.

1.3.2  NV_vertex_program

NV_vertex_program [Kilg02a] is an OpenGL extension that defines a vertex shader exe-
cution environment with an accompanying low-level shading language. The NV prefix
in its name indicates that the extension was developed by the graphics hardware vendor
NVIDIA. At the time of this publication being issued, the NV_vertex_program extension
is available on all NVIDIA graphics cards of the GeForce series, the Matrox Parhelia
graphics card, newer 3Dlabs cards with the P10 GPU, and Mesa, the OpenGL look-a-like
software renderer, versions 4.1 and up. In an OpenGL-typical manner the extension
refers to what is called vertex shader in this paper as vertex program.

The execution environment of NV_vertex_program is basically the same as the environ-
ment of DirectX 8 vertex shaders and not computationally more powerful. It can be seen
as the OpenGL equivalent to Direct3D 8 vertex shaders. Except for a couple of new
instructions that can, however, be emulated by using other instructions in Direct3D, and
the omission of macro instructions, the instruction sets of shading languages are the same
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as presented in table 1.2. The same register modifiers, such as destination register masks,
source register negation, and source register swizzle masks, are supported. Also the
number of available input, output, temporary, address, and parameter registers is the
same as for the Direct3D 8 vertex shader execution environment. Syntactically, the mne-
monics used in NV_vertex_program are upper-case as opposed to lower-case, all instruc-
tions have to be ended by a semicolon, and the input and output register names are spec-
ified by using array indexing syntax, such as o[HPOS] instead of oPos or v[2] instead of
v2.

The three additional instructions that NV_vertex_program offers over the Direct3D 8
vertex shading language are listed in table 1.4.

NV_vertex_program also introduces so-called position invariant vertex shaders. A ver-
tex shader is called position invariant when it produces the exact same clip coordinate
position for a vertex as would the conventional, fixed-function pipeline. This is impor-
tant for multi-pass rendering techniques where some passes use the fixed-function pipe-
line. In OpenGL, no precision requirements for the vertex transformations from local
object space to clip coordinates are specified. Therefore it is easily possible that in a
multi-pass algorithm which uses both vertex shaders and the fixed-function pipeline the
same vertex position in local object coordinates might end up having different clip coor-
dinates. For these cases an option that guarantees position invariance has been intro-
duced. A position invariant shader is not allowed to write a vertex position in clip coordi-
nates to the corresponding output register. Instead, the vertex position is computed
implicitly by the GPU using the same computation as used by the fixed-function pipe-
line.

1.3.3  ARB_vertex_program

The ARB_vertex_program OpenGL extension [Brow02a] was officially approved by the
ARB, the Architectural Review Board, in June 2002. It is the culmination of previous
vendor efforts, most notably NVIDIA’s NV_vertex_program, to specify a vertex shading
language for OpenGL. ARB_vertex_program closely resembles NV_vertex_program in
many ways. The instruction set and instruction syntax are almost the same. Position

Table 1.4: New Instructions in NV_vertex_program
Opcode Arity Description Example
ABS Unary Assigns the component-wise absolute value of

the source vector to the destination register.
ABS o[HPOS], c[1]

DPH Binary Calculates the four-component dot product of
the two source vectors assuming, however, that
the fourth component of the first source vector
is 1.0. The result is replicated to all four
components of the destination register.

DPH R1, R0, c[0]

RCC Unary Calculates the reciprocal value of the source
scalar and clamps the result to the range

, if the reciprocal value is positive, or
 otherwise. The reason for this

clamping is to keep a certain amount of float-
ing-point precision for subsequent calculations.

RCC R0.x, R0.x

2 64– 264[ , ]

2– 64 2 64––[ , ]
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invariant shaders are supported. Also the execution environment is closely related.
ARB_vertex_program offers the same kind of input, output, temporary and address reg-
ister, but differentiates between two kinds of parameter registers, so-called program local
parameters and program environment parameters. The former are parameters local to a
vertex shader whose values are lost once the shader is no longer the current vertex
shader. The latter retain their values and can also be read by other vertex shaders. Fur-
thermore the number of available registers is not limited per se anymore. Instead, an
application can query how many parameter or address registers are available.

Unlike the vertex shading languages presented so far, ARB_vertex_program does not
have fixed register names anymore. Instead, register names must be declared using spe-
cial declaration statements before they are used. For example:

ATTRIB pos = vertex.position;
OUTPUT outpos = result.position;
TEMP myTempReg;
ADDRESS myAddressReg;
PARAM mvp[4] = { state.matrix.mvp };

The above piece of code declares a vertex attribute register called pos that contains the
vertex position, an output register called outpos that maps to the homogeneous position
computed by the shader, a temporary register called myTempReg, an address register
called myAddressReg, and a special parameter register called mvp that uses an automatic
state tracking, a new feature introduced with ARB_vertex_program. Note that some reg-
ister names are already declared implicitly and need not be re-declared in a vertex shader.
This includes all the input and output registers which all carry the prefix vertex and
result, respectively, in their names and the local and environment parameter registers
that are called program.local[i] and program.env[i] with i being a number between
zero and the maximum number of available parameter registers.

Automatic state tracking allows a vertex shader to automatically track various state vari-
ables of the OpenGL state machine. One such variable is state.matrix.mvp, as used in
the above example, which gives the shader access to the combined model-view-projec-
tion matrix as set by the application using the standard OpenGL calls like glLoadMa-
trix. In the other vertex shading languages discussed so far, state tracking was a tedious
task for the application and required setting certain parameter registers manually when-
ever a state needed by the vertex shader had changed. In addition to the various standard
OpenGL matrices, such as the model-view, the projection, or the texture matrices, other
useful state that can be tracked includes all light parameters set via glLight, the texture
coordinate generation planes set via glTexGen, and the material parameters set via glMa-
terial.

As mentioned above, the instruction set of ARB_vertex_program is almost the same as
NV_vertex_program, and therefore also almost the same as the DirectX 8 vertex shading
language. It lacks NV_vertex_program’s RCC reciprocal clamp instruction, but adds five
new instructions listed in table 1.5. The instruction examples given in the table assume
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that a temporary register called temp has been declared. All these instructions can be
emulated using one or more instructions of NV_vertex_program.

1.3.4  Direct3D 9 Shading Languages

With the release of DirectX 9.0 [Micr02] in December 2002, Microsoft also introduced
new versions of the vertex and pixel assembly shading languages of Direct3D. In partic-
ular the language versions 2.0, 3.0, and, at the last moment to accommodate the features
of NVIDIA’s GeForce FX graphics chip, the so-called version 2.x or 2.0 Extended were
added for both vertex and pixel shaders. The most important new features are a higher
number of instruction slots and a couple of new instructions, most notably for flow con-
trol. In addition to the new versions of the low-level vertex and fragment shading lan-
guages, Direct3D 9 also has a high-level shading language called HLSL (High-Level
Shader Language). It can be considered syntactically and semantically equivalent to
NVIDIA’s high-level shading language Cg and will be discussed in section 1.4.2.

1.3.4.1  Direct3D 9 Vertex Shader Assembler

The vertex shading assembly language of Direct3D 9 has improved in various areas. The
number of parameter registers has increased from 96 to 256. There are new boolean reg-
isters used for conditional execution and new integer registers used as counters in loop
and repeat blocks. For language version 2.0 the maximum number of instructions has
been pushed up to 256, for version 3.0 even to 512 or possibly more (depending on the
used hardware). A couple of new arithmetic instructions have been added, such as an

Table 1.5: New Instructions in ARB_vertex_program
Opcode Arity Description Example
FLR Unary Performs a component-wise floor operation on

the source vector.
FLR temp, temp;

FRC Unary Computes the component-wise fractional por-
tion of the source vector.

FRC temp,
vertex.color;

EX2 Unary Computes an approximation (that has higher
precision as the EXP instruction) of the base 2
raised to the power of the given source scalar
and replicates the result to all four components
of the destination register.

EX2 temp,
vertex.position.x;

LG2 Unary Computes an approximation (that has higher
precision as the LOG instruction) of the base 2
logarithm of the source scalar and replicates the
result to all four components of the destination
register.

LG2 temp,
vertex.position.z;

XPD Binary Computes the three-component vector cross
product of the two given source vectors.

XPD temp, temp,
vertex.normal;

SWZ Unary Performs an extended swizzle operation on the
source vector. The extended swizzle can not
only swap or replicate components of the source
vector, but also set components to either 0 or 1,
if desired.

SWZ temp, temp, 1,
0, y, z;

POW Binary Raises the first source scalar to the power of the
second source scalar and replicates the result to
all four destination register components.

POW temp,
verex.attrib[0].x,
verex.attrib[1].y;
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instruction for computing the vector cross product, or a power instruction. These instruc-
tions are basically the same as the ones introduced with the ARB_vertex_program
OpenGL extension and can be considered macro instructions, since they could be emu-
lated using multiple instructions before. Also an instruction called sincos to compute
the sine and cosine of a value and an instruction nrm to normalize a vector have been
added. The really interesting new instructions in version 2.0, however, are the instruc-
tions for static flow control listed in table 1.6.

With these instructions it is possible to use if-statements, write loops, and call subrou-
tines in vertex shaders. This is useful in situations where a lot of code had to be dupli-
cated in older versions of the language, for example when computing per-vertex lighting
for more than one light source for a scene where the computations required for each light
source are the same.

Versions 2.x and 3.0 of the language add dynamic flow control instructions that allow if-
statements, subroutine calls and loops that only get executed based on a condition
depending on values computed earlier in the shader. Also breaking out of loops, again
possibly with a specific condition, is possible with new break instructions.

Table 1.6: Direct3D 9 Vertex Shading Language Static Flow Control Instructions
Opcode Description Example
label Marks the next instruction as having a label

index. A label defines a position in the vertex
shader that other flow control instructions use to
jump to.

label l1

call Performs a function call to the given label
index.

call l1

callnz Performs a conditional function call to the given
label, if a given boolean register is not zero.

callnz l1, b2

ret Returns from a subroutine. Multiple return
statements are not permitted in a subroutine.

ret

rep Starts a repeat block that loops according to the
repeat count specified in the given integer regis-
ter. Repeat loops cannot be nested.

rep i0
add r0, r1
endrep

endrep Ends a repeat block started with the rep instruc-
tion

loop Starts a loop block. A loop starts from a speci-
fied initial value with a specified iteration count
and increment. These values are specified in a
given integer register. The current loop count is
stored in the loop counter register called aL.
Loops can be nested in versions 2.x and above.

loop aL, i2
add r0, c[aL]
endloop

endloop Ends a loop block.
if Starts an if block. If the given boolean register

is true, the code enclosed by the if and the
matching else instruction is run. Otherwise, the
code enclosed by the else and endif instruction
is run. If blocks can be nested.

if b0
mov r0, r1
else
mov r0, r2
endif

else Starts an else block for a preceeding if block.
endif Ends an if block.
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Finally, version 3.0 adds extended relative addressing into more register banks and so-
called vertex textures. In previous versions only the parameter registers could be indexed
using relative addressing. In version 3.0, also the input and output registers can be
indexed with the loop counter register. Vertex textures are textures that can be sampled in
the vertex shader by the use of a special texture addressing instruction. The vertex shader
has access to new texture stages that are independent of the texture stages at the fragment
level. Vertex textures are a powerful feature that gives vertex shaders easy access to large
memory chunks. Currently, no available graphics hardware supports vertex textures or
any other features of language version 3.0, though.

1.3.4.2  Direct3D 9 Pixel Shader Assembler

The programmable fragment processing stage is probably the biggest improvement in
Direct3D 9 over its predecessor Direct3D 8 (apart from the addition of a high-level shad-
ing language). The most changes and improvements were made to the pixel shading
assembly language. Most importantly, the number of available instructions has been
increased to 64 arithmetic instructions and 32 texture instructions for language version
2.0 and even 512 minimum or more for version 3.0.

Texture coordinate and texture sampler registers have been completely separated into
two different register banks. t0 to t7 are the 8 texture coordinate registers, and s0 to s15
are the 16 sampler registers that identify a texture sampling stage. For performing a tex-
ture lookup only three texture instructions are available, significantly cutting down the
unnecessarily high number of texture addressing instructions of previous language ver-
sions (see section 1.3.1.2). The three texture instructions are: texld for regularly sam-
pling a texture by the use of a specific texture sampler stage and a set of texture coordi-
nates, texldp for projective texture sampling, and texldb for texture sampling with a
mipmap level of detail bias.

With version 2.0 and up the pixel shading language now supports all the arithmetic
instructions that are also supported by the vertex shading language, which allows very
powerful fragment shaders. Even the log, exp and sincos instructions are supported at
the fragment level. Also the nrm instruction for normalizing a vector is available, no
longer making the use of normalization cube maps to normalize vectors in a fragment
shader necessary. However, version 2.0 does not yet support any kind of flow control,
not even static flow control.

Flow control is introduced in language versions 2.x and 3.0. All the static flow control
instructions of the vertex shading language version 2.0, such as call, if, rep, and loop
(see table 1.6), are available with version 2.x. Additionally, the dynamic flow control
instructions, just as in the corresponding versions of the vertex shading language, have
been added. Finally, instructions to compute the partial derivatives relative to the x and y
window coordinates of a fragment have been introduced. For language version 2.x all
these features depend on certain capability flags that are set depending on whether the
hardware supports a particular feature. In other words, with version 2.x all these features
are optional. In version 3.0 they must, however, be supported. At present, no hardware
available on the market supports language version 3.0 or 2.x with flow control instruc-
tions.



20
1.3.5  NV_vertex_program2

The NV_vertex_program2 OpenGL extension [Kilg02b][Kilg02c] of NVIDIA intro-
duces an extended execution environment to the NV_vertex_program extension. It is
currently only available on NVIDIA’s newest generation GPU GeForce FX. This new
extension offers a number of new, very powerful instructions, such as dynamic branch-
ing, looping and subroutine calls. Also sine and cosine, high-precision exponentiation
and logarithm, and a couple of other convenient instructions have been added, which
can, however, for the most part be emulated by using multiple instructions in earlier ver-
sions of the language. The maximum number of instructions per shader has been doubled
to 256. The number of parameter registers has been increased from 96 to 256.

Feature-wise, the extension corresponds to the Direct3D 9 vertex shading language ver-
sion 2.x discussed in the previous section. Syntax-wise the languages are slightly differ-
ent, though. For example, labels in NV_vertex_program2 are declared by specifying an
identifier followed by a colon, whereas in the Direct3D 9 vertex shading language labels
are declared using the pseudo-instruction label. Furthermore, in Direct3D 9 only for-
ward calls are allowed, that is, a label must be declared after all branch or call instruc-
tions that reference that label. NV_vertex_program2 does not have any such restriction.
Apart from these syntactical differences, both languages are computationally equally
powerful.

1.3.6  ARB_fragment_program

The ARB_fragment_program OpenGL extension [Brow02b] is the first fragment shader
extension approved by the ARB and is the fragment-level counterpart to
ARB_vertex_program. It uses the same function entry points to upload fragment shaders
to the hardware and to set parameters as ARB_vertex_program, and defines a fragment
shading assembly language that is almost as powerful as its vertex-level counterpart. The
language supports sine and cosine instructions, as well as exponentiation and logarithm
computation instructions. Unlike previous fragment shading languages it also supports
full-featured operand component swizzling, as defined in ARB_vertex_program. Just as
in the Direct3D 9 fragment shading language, three texture fetching instructions are
available: TEX is used to regularly sample textures, TEXP is used to perform projective
texture mapping, and TEXB performs texture mapping with a mipmap level of detail bias.
Also a KIL instruction is available to prevent a fragment from being passed on to the sub-
sequent stages of the graphics pipeline.

ARB_fragment_program is equally powerful as the Direct3D 9 fragment shading lan-
guage version 2.0, but not as powerful as version 2.x or 3.0 because of the lack of
instructions for static or dynamic flow control. Thus branching, subroutine calls and
loops are not supported. A future extension of the language is very likely to provide
these features, though, when hardware becomes available that offers flow control in the
programmable fragment processing stage.
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1.3.7  NV_fragment_program

NV_fragment_program [Kilg02b][Kilg02c] is an NVIDIA-proprietary fragment shader
OpenGL extension that basically corresponds to the Direct3D 9 fragment shading lan-
guage version 2.x, but is a bit more powerful in certain areas in that it slightly lifts some
restrictions, and a bit less powerful regarding flow control instructions, which it does not
support. Fragment shaders can have a maximum of 1024 instructions instead of the max-
imum 512 instructions in Direct3D 9. Also NV_fragment_program can execute instruc-
tions at different levels of precision, if desired. Arithmetic instructions can be performed
at either 32-bit floating point precision, 16-bit floating point precision, or 12 bit fixed
point precision. The precision of individual instructions is specified by adding a one let-
ter suffix representing the various levels of precision to the instruction opcode.

NV_fragment_program does not offer static or dynamic flow control instructions, but,
thanks to a special condition code register, allows the construction of if-statements. This
is achieved by executing both the if- and the else-block of the statement storing the
results in temporary registers. Then the condition gets evaluated, thus setting the condi-
tion code register. Depending on the result, one of the previously computed temporary
values is chosen. Just as ARB_fragment_program and the Direct3D 9 fragment shading
language version 2.x, NV_fragment_program has instructions to compute the sine,
cosine, exponential and logarithm of a value, and additionally provides instructions to
compute approximate partial derivatives with respect to the x and y window coordinates.
Furthermore, NV_fragment_program has pack and unpack instructions with which it is
possible to pack and then unpack four 8 bit scalars into 32 bit floating point registers.
This is useful for storing multiple channels in a single destination buffer and is mostly
used in the process of rendering to a floating point texture. Considering its features and
the fact that NV_fragment_program is available in hardware in the form of the GeForce
FX GPU, it is the most powerful fragment shading language implemented in graphics
hardware currently available.

1.4 High-Level Shading Languages

With low-level shading languages becoming more and more powerful and thus also more
complex, and due to the variety of available assembly-like languages, the need for high-
level shading languages for graphics programming became apparent. Similar to the move
from assembly languages to high-level programming languages in the area of general
purpose CPU programming, high-level shading languages are beginning to emerge that
abstract from the assembly-like languages predominant until recently.

Syntax-wise, most of the high-level shading languages available today are based on the
programming language C and tus are structured languages. The syntax for flow control
statements and functions is just as in C. However, the supported data types are very lim-
ited. The integral data types usually include a IEEE 32-bit floating-point type and vector
and matrix types which are typically useful in graphics programming. Integer and
boolean data types are also available in most languages. String or character data types are
not supported in any language at the moment.
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The following sections discuss three high-level, real-time shading languages that can be
used on consumer graphics hardware. First, the Stanford Real-Time Shading Language is
introduced, which served as scientific basis for the other languages presented. Then
NVIDIA’s Cg is presented, which was the first high-level language to gain wide popular-
ity. The discussion of Cg equally applies to the Direct3D 9.0 HLSL, which is syntacti-
cally and semantically equivalent to Cg. Finally, the current draft of the Glslang shading
language is discussed. Glslang will be released as the official high-level shading lan-
guage of OpenGL 2.0 and is currently still under development by the corresponding
ARB working group.

1.4.1  Stanford Real-Time Shading Language

The Stanford Real-Time Shading Language [Prou00][Mark01][Prou01] was the first
real-time shading language specifically designed for programmable consumer hardware
(unlike Olano’s work with the PixelFlow system [Olan98][Eyle97]). As opposed to the
other shading languages presented in this paper, the Stanford language does not distin-
guish between vertex and fragment shaders, but rather combines them into a single so-
called surface shader. Surface shaders return a four-component RGBA colour as final
output that gets passed on as fragment colour to the final pipeline stages. Furthermore so-
called light shaders can be written that perform luminance calculations for lights. Light
shaders can only be used from surface shaders and return a four-component RGBA light
colour.

A surface shader can be seen as a program for the entire pipeline and not just a single
pipeline stage as with other shading languages. Therefore, the Stanford Shading Lan-
guage is not as hardware-centric as most other real-time shading languages. However,
the execution environment does not differ significantly from what has been discussed so
far. The compiler internally breaks down the shader to multiple shader blocks that each
program a specific pipeline stage, as can be seen in the abstraction of the programmable
pipeline for the Stanford system in figure 1.4. The figure only shows the programmable
stages of the pipeline. These stages are connected by fixed-function stages that convert
between computation frequencies just as in figure 1.1. Note that the application can only
directly pass in data to the primitive group and the vertex processing stages.

Figure 1.4: Stanford Programmable Pipeline Abstraction

In addition to the two computation frequencies, per-vertex and per-fragment, the Stan-
ford language also has the concept of a constant and a per-primitive group computation
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frequency as shown in figure 1.5. Constant computations are evaluated by the compiler
at compile time. Other shading languages, such as Cg or Glslang, offer this as well, but
do not regard it as separate computation frequency, but rather as compiler optimization.
Per-primitive group computations influence values that do not change for a number of
primitives. For example, they compute a new projection matrix. The Stanford language
is the only shading language that supports per-primitive group computations in the shad-
ing language itself. For all other shading languages presented in this paper per-primitive
computations must be done on the CPU in the general purpose programming language
that is used to develop the main application. The results of these computations are then
bound to parameter registers to give the shader access to them. Since no graphics hard-
ware currently supports per-primitive group computations, the Stanford compiler actu-
ally compiles per-primitive group shader code to machine code of the host CPU.

Figure 1.5: Computation Frequencies in the Stanford System

The Stanford Shading Language itself is loosely based on the RenderMan Shading Lan-
guage [Hanr90] omitting features that were not possible on consumer graphics hardware
at the time the system was devised, such as loops and conditionals. In addition to the
base data type of the RenderMan Shading Language, float, the Stanford language adds
other data types that are useful in the context of real-time shading languages for pro-
grammable graphics hardware. In particular, the Stanford language supports ten data
types: scalar floats, three-component and four-component vectors, each of which may be
composed of either floats or floats clamped in the range [0, 1], three-by-three float matri-
ces, four-by-four float matrices, booleans, and a special texture reference type to refer-
ence texture sampler stages when texture lookups are performed.

The operations offered by the language were chosen to support the standard transform,
lighting, and texture access and blending functionality. The language offers basic scalar,
vector, and matrix operations; exponentiation; square roots; dot and cross products; trig-
onometric functions; comparison, minimum and maximum operators; clamp operators;
and type casting. Additional operations perform 2D, 3D, and, cube map texture lookups.
For special-purpose complex operations that are not orthogonally supported by graphics
hardware, the Stanford system furthermore offers so-called canned functions that make
these operations more efficient on specific backends. In particular, the language offers
two functions, bumpdiff and bumpspec, that perform per-pixel bump mapping as
described by Kilgard in [Kilg00].

A unique feature of the Stanford shading system is that the shader runtime performs
transparent multipassing when a shader does not fit within the hardware limits. When the
compiler notices that the hardware limits have been reached, for example a shader
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requires too many instructions, the shader is split up into multiple shaders and the run-
time uses the render-to-texture feature of OpenGL to perform multipass rendering. This
means that all passes except for the last one are rendered to a texture instead of the frame
buffer, where each texture is used in subsequent passes. Naturally, due to the limited pre-
cision and blending capabilities of current texture hardware this kind of multipassing is
not always possible. Also multipassing has negative effects on performance, since all
geometry data must be sent to the graphics hardware multiple times.

1.4.2  Cg / Direct3D HLSL

The language Cg [Kirk02], short for C for Graphics, released by NVIDIA as a public
beta in April 2002, was the first high-level shading language to find widespread use. The
initial beta release contained the so-called Cg runtime, a library used to set up, manage,
and compile shaders at runtime, and a command-line compiler that was able to compile
to the Direct3D 8 low-level shading languages, NV_vertex_program and
ARB_vertex_program. Since the initial Cg runtime did not have a convincing, well-
thought-out design and suffered from a number of obvious bugs, a separate Cg runtime
was developed for XEngine. Since there was no support for fragment shaders in
OpenGL, either, a cross-compiler for translating Direct3D 8 pixel shaders to the corre-
sponding OpenGL extensions NV_register_combiners and NV_texture_shader was inte-
grated into XEngine. For a couple of months, XEngine was the only way to use fragment
shaders with OpenGL and Linux thanks to that cross-compiler.

The final release of the Cg compiler and Cg runtime in December 2002 eventually got
rid of most of the issues in the beta releases. The runtime was completely redesigned and
rewritten, and the compiler supported compiling to the OpenGL fragment shading exten-
sions NV_register_combiners/NV_texture_shader, and additionally to the Direct3D 9
low-level shading languages, ARB_fragment_program, and NV_fragment_program.
Due to the involvement with the Cg online community and the development of a separate
Cg runtime for XEngine, the author was invited by NVIDIA to be a beta tester for the
new compiler and runtime.

The high-level shading language released by Microsoft with Direct3D 9 in December
2002, simply called High-Level Shader Language or HLSL, uses the same grammar as
Cg. HLSL is syntactically and semantically equivalent to Cg, except that it has a differ-
ent name, the runtime used to manage and compile shaders is different, and of course it
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can only be used with Direct3D 9. Everything said in this section about the Cg language
itself also applies to Direct3D 9’s HLSL.

Figure 1.6: Cg’s GPU Model

Cg’s grammar is loosely based on the C programming language with various changes or
enhancements necessary due to the fundamental differences of GPU and CPU program-
ming. Figure 1.6 shows the GPU model used by Cg, which, not surprisingly, follows the
same architecture described in section 1.2. Unlike in the Stanford Shading Language,
separate programs have to be written for vertex and fragment shaders in Cg, that also
need to be compiled separately. When compiling a shader, a so-called compiler profile
must be specified. A profile defines what language features are available and what low-
level shading language the compiler should use as target language. These profiles are
necessary because GPU programmability has not yet reached the same generality as
CPU programmability. For example, in the arbvp1 profile, the profile for
ARB_vertex_program, if-statements are not allowed because ARB_vertex_program
does not have instructions for flow control. The vp30 profile, which is the profile for the
NV_vertex_program2 extension, on the other hand, allows if-statements and loops since
that particular shading language supports dynamic flow control. It is also possible to let
the Cg runtime choose an optimal profile at runtime depending on the available features
of the graphics hardware.

A special language feature, the so-called bindings or binding semantics, are used to bind
vertex attributes to input variables of the vertex shader, and output variables of the vertex
shader to input variables of the fragment shader. The bindings represent underlying hard-
ware registers and some of them are profile-specific, even though most profiles share
most of the bindings. Bindings are specified in a variable declaration after a colon fol-
lowing the variable name.

Cg supports six basic data types, a 32-bit IEEE floating point type, a 16-bit IEEE-like
floating point type, a 32-bit integer type, a 12-bit fixed point type, a boolean type, and
special sampler types that represent handles to texture objects. Additionally, the
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language supports built-in compound vector and matrix types that are based on the basic
types. For example, float4 is a four-component vector type composed of four 32-bit
floating point values. Furthermore, arrays and structures can be declared by using the
basic and compound types, just as in the programming language C.

The statements and operators supported by Cg are largely the same as in C, except for the
fact that most operations cannot only operate on scalar data types but also on compound
vector and matrix types. Except for the bitwise binary operators and operators for point-
ers, all standard C operators are supported in Cg. Additionally, component swizzling on
vector types as defined in most low-level shading languages is supported. Functions can
be defined just as in C, and also function overloading similarly to C++ is allowed. Func-
tions cannot only be overloaded by different function parameter lists, but also by differ-
ent compiler profiles. In addition to the standard operators, the Cg language offers a large
standard library of pre-defined functions, such as sine, cosine, dot and cross products,
matrix multiplication, vector normalization, and texture fetching.

To show how convenient it can be to use a high-level shading language instead of a low-
level language, the example vertex shader presented in section 1.3.1.1 that computed dif-
fuse per-vertex lighting in world space using a single directional light is presented again,
but this time written in Cg. As a note to better understand the code, in Cg, variables that
do not change per-vertex, such as the combined world-view-projection matrix, are
declared with the uniform keyword. These uniform variables are assigned to parameter
registers by the compiler and set by the application using the Cg runtime.

struct Output
{

float4 pos : POSITION;
float4 color : COLOR0;
float2 texcoord : TEXCOORD0;

};

Output main(
float4 pos : POSITION,
float3 normal : NORMAL,
float2 texcoord : TEXCOORD0,
uniform float4x4 worldViewProj,
uniform float4x4 invTransWorld,
uniform float3 lightDir,
uniform float4 diffuseColor,
uniform float4 ambientColor)

{
Output output;

// transform the vertex position to homogeneous clip space
output.pos = mul(worldViewProj, pos);

// transform the normal from local to world space
float3 worldNormal = mul((float3x3)invTransWorld, normal);

// normalize the normal and the light vector
worldNormal = normalize(worldNormal);
float3 worldLightDir = normalize(lightDir);
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// perform the lighting computation
float diffuse = max(0, dot(worldNormal, worldLightDir));
output.color = ambientColor + diffuse * diffuseColor;

// just pass through the texture coordinates
output.texcoord = texcoord;

return output;
}

This shader is easier to read than the low-level shader presented earlier. Especially for
more complicated shaders, using a high-level shading language can drastically shorten
the development cycle.

1.4.3  Glslang

Glslang, short for GL Shading Language, is the tentative name of the standardized high-
level shading language of OpenGL, which will either be introduced with OpenGL 2.0 or,
more likely, earlier in the form of regular OpenGL extensions that will later be integrated
into core OpenGL 2.0. At the time of this paper being written, the language itself has not
yet been finalized. The corresponding ARB working group is still working on the lan-
guage specification. Glslang was first introduced in draft papers presented by 3Dlabs,
which is what the following discussion is based on [Bald03][Rost02]. Glslang is never-
theless presented here, even though it is not yet finalized, because it can be expected to
be one of the most important real-time, high-level shading languages once it becomes
part of core OpenGL. Just as Cg, Glslang is largely based on the C programming lan-
guage and is generally very similar to Cg in a lot of respects. Glslang has the same GPU
model as Cg and also requires separate programs to be written for vertex and fragment
shaders.

Glslang has ten basic data types, a boolean type, signed and unsigned integer types, one-,
two-, three-, and four-component 32-bit floating-point types, and a two-by-two, three-
by-three, and four-by-four 32-bit floating point matrix type. Arrays and structures of
these basic types can be declared. All the standard operators offered by C are supported
by Glslang, except for operators dealing with pointers since pointer types are not part of
the shading language. Additionally, component swizzling on the vector types is also
allowed. The statements supported by Glslang are the same as Cg, so everything from an
if-statement to a for-loop is supported. Functions are declared just as in C, and just as in
Cg, C++-like function overloading is also permitted. The built-in functions offered by
Glslang are mostly the same as Cg. Functions for normalizing vectors, computing the
sine and cosine of a value, multiplying matrices, and many other operations are provided.

Instead of using bindings to specify input and output variables to the shaders, Glslang
uses pre-defined, global, read-only and write-only variables that the shaders use to
access vertex attributes, fragment shader inputs, or GL state. For example, a vertex
shader reads the input vertex position from the global read-only variable gl_Vertex and
writes the computed homogeneous clip position of the vertex to the global variable
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gl_Position. The fragment shader then receives the position interpolated by the rasterizer
in the global read-only variable gl_FragCoord.

1.5 Conclusion

GPU programmability has increased rapidly in the last couple of years and will probably
continue to do so for quite a while. The development undergone by shading languages
has roughly been the same as for general-purpose programming languages so far. The
first shading languages were primitive assembly languages with a very limited instruc-
tion set. The instruction sets grew to include flow control instructions as well, and proce-
dural high-level languages began to emerge. It is only a matter of time until object-ori-
ented principles are integrated into new high-level shading languages. The seemingly
unreachable goal of being able to use the RenderMan Shading Language, which was
devised as non-real-time shading language for ray tracing, in real-time on consumer
graphics hardware has come into reachable grasp within the last few years. Judging from
the pace of evolvement of real-time shading languages, this goal will become reality
within the next two or three generations of graphics hardware.

To further underline the importance of real-time shading, the first development environ-
ments designed exclusively for shader development have been released, and also tradi-
tional ray tracing programs have begun to use real-time shading for preview purposes.
Since entertainment companies are already hiring people whose job it is to exclusively
develop real-time shaders, it is a definite plus for a graphics software engineer to be
familiar with some of the shading languages presented.
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